
AD-A273 701

WL-TR-93-3098

EXPERT SYSTEM RULE-BASE EVALUATION
USING REAL-TIME PARALLEL PROCESSING

4t4

JAMES L. NOYES

SEPTEMBER 1993 I a

~r
FINAL REPORT FOR 06/01/93-08/01/93 DEC15199 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND 3-30217
WRIGHT PATTERSON AFB OH 45433-7562

93 ~mdL 0j OG

Best
Available

Copy

NOTICE

When government drawings, specifications, or other data are used
for any purpose other than in connection with a definitely
government-related procurement, the United States Government incurs
no responsibility nor any obligation whatsoever. The fact that the
government may have formulated, or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by
implication or otherwise in any manner construed, as licensing the
holder or any other person or corporation, or as conveying any
rights or permission to manufacture, use, or sell any patented
invention that may in any way be related there to.

This report is releasable to the National Technical Information
Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for
publication.

XUSAF
PETER G. RAETH, MAJOR, USAF TIMOTHY KINNEY, LTCOL, USAF
CHIEF, PILOT/VEHICLE INTERFACE DEPUTY, COCKPIT INTEGRATION DIVISION

TECHNOLOGY BRANCH WRIGHT LABORATORY
WRIGHT LABORATORY

s&' .- tWu-<
PAUL E. BLATT
CHIEF, COCKPIT INTEGRATION DIVISION
WRIGHT LABORATORY

If your address has changed, if you wish to be removed from our
mailing list, or if the addressee is no longer employed by your
organization, please notify Wright Laboratory; Flight Dynamics
Directorate; WL/FIPA Bldg 146; 2210 Eighth Street Ste 1; Wright-
Patterson Air Force Base, OH 45433-7511 USA

Copies of this report should not be returned unless return is
required by security considerations, contractual obligations, or
notice on a specific document.

I Form Approvod
REPORT DOCUMENTATION PAGE 0 MB NO. 0704-0189

Public reidoninq burden 4of this collection Of ,nforrnation % estimated '0 aerage 1 'Our Der esporse. riluding the time for reviewing insructiofns. searching existing data ~oaces.
gathering and maintaining the data needed, and cool'e~ting arna reviewngn thte c0lection of informnation S.end comments re~afang this burden estimeate or anV other asi.ct of this
collection ,tnrr.rcludingsuggestonstor reducing *.h ourrev tc JYasn 1 igton '4eacilujrters Serv ces Diroctorate or informnation OcperationM and eporli. IIIS Jefferson
Dav~is Hith ay, Su.te 1204 .;.rlington. IA a22202-4302 40n0 tc MoOffi-e-tfMviaqen'ent ad lBudgqet, P*Per... ledoction P'o ct (0 704-0 1). Washington. DC Ž0S03,

1. AGENCY USE ONLY (Leave blank) I2. REPORT DATE I3. REPORT TYPE AND DATES COVERED

I SEP 1993 FINAL 06/01/93---08/01/93
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

EXPERT SYSTEM RULE-BASE EVALUATION USING REAL-TIME PE 62201
PARALLEL PROCESSING PR 2402

___ TA 04
*6. AUTHOR(S) WU 86

JAMES L. NOYES
PROFESSOR OF COMPUTER SCIENCE

* ~~DEPARTMEFNT OF rnMPU]TER S~CIENCE WTTTPNRFRR 1TNTVF.RqTTY_____________
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
FLIGHT DYNAMICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7562

9. SPONSORING,'MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

FLIGHT DYNAMICS DIRECTORATE AEC EOTNME

WRIGHT LABORATORY WL-TR-93-3098
AIR FORCE MATERIEL COMMAND
WRIGHT PATTERSON AFB OH 45433-7562

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION! AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. I

13. ABSTRACT (Maximum 200 words)

A large rule-based expert system with each rule involving perhaps 10 out of 100,000
possible Boolean criteria, can require a significant amount of processing time to
evaluate. This time can be reduced if all rules have a single consequent and have
antecedents that contain only conjunctions of the Boolean criteria or their
complements. If the consequents do not insert new facts into the rule-base, then
parallel processing can be used with great efficiency. The value of a rule-based
expert system to help solve a variety of diagnostic and advisory needs has been
well-demonstrated over the last 2 decades. Parallel processing has become
increasingly important for embedded systems in order to accelerate a variety of
computations. This report discusses research connected to the development of a
data structure and algorithm to perform parallel inferencing in rule-based systems.
It also discusses a simulation technique for estimating the number of processors
needed to evaluate a given number of rules and criteria within the required time.

14. SUBJE..1 TERMS EXPERT SYSTEMS, KNOWLEDGE-BASED SYSTEMS, RULE-BASED 15. NUMBER OF PAGES

SYSTEMS, ARTIFICIAL INTELLIGENCE, REAL-TIME PROCESSING, PARALLEL 33A
PROCESSING, DISTRIBUTED COMPUTING, DECISION SUPPORT, COCKPIT 16. PRICE CODE

AUTOMAIN ___________________T

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UILASFEDUNCLASS IFIED UNCLASS IFIED UL

NSN 7540-01-280.5500 Standard Form 298 (Rev 2-89)
i Prescritied by ANS.I Sfd Z39-18

Table of Contents

1. INTRODUCTION 1

2. EXPERT SYSTEM FORMULATION 3

3. DATA STRUCTURE AND ALGORITHM DEVELOPMENT 6

4. METHOD-1 ... 8

5. METHOD-2 .. 13

6. DEALING WITH UNCERTAINTY 16

7. SIMULATION GUIDELINES AND RESULTS 19

8. TEST RESULTS AND CONCLUSIONS 28

9. REFERENCES 30

List of Figures

1. Basic Systems Diagram of Parallel Real-Time
Rule-Based Expert System 15

2. Rule Simulation Program Sample Screen Output ... 23

AceIon For '

INTIS
CRA&I

1DTIC TAB
Unannounced 0•

B Y •

Dist. ibution IAv ia iity Codes

Aval
iin Q Avai a7d I or=D ist S pecial

iii DTIC QUALM•I n O IL

ACKNOWLEDGM1N$

First, I would like to thank Major Peter G. Raeth, Chief of the

Pilot/Vehicle Interface Technology Branch (WL/FIPA) and my research

advisor during this 10-week period. His guidance was very clear

and he went out of his way to see that the problem was well

defined. He helped me obtain the related literature and computing

resources. Next I would like to thank Lt Col. Tim Kinney, Deputy

of the WL/FIP Division, and Dr. Jim Olsen, Chief Scientist of WL/FI

for their invitation to do this type research at Wright Laboratory.

Finally, I would like to thank Andy Probert, WL/FIPC, for his

insights into what pilots really expect from an on-board expert

system.

Editor's Note: Dr Noyes performed this research as part of the

Summer Faculty Research Program sponsored by the Air Force Office

of Scientific Research, Bolling Air Force Base, Washington, DC.

iv

EXPERT SYSTEM RULE-BASE EVALUATION
USING REAL-TIME PARALLEL PROCESSING

James L. Noyes

1. INTRODUCTION

The value of a rule-based expert system (ES) to help solve a

variety of diagnostic and advisory needs has been well-demonstrated

over the last 2 decades, as discussed by Noyes in [1]. Sometimes,

a large number, say O(103), of the ES rules must be continuously

checked in real-time (e.g., every O(10-1) seconds) due to stringent

requirements imposed by the problem. In addition, while each rule

may use only 0(101) criteria, there may be a very large number of

possible criteria, say O(105), for the entire rule-base that must

be checked during each time-step. Because of these timing demands,

parallel processing may be deemed necessary. Parallel processing

has become increasingly important in order to accelerate a variety

of computations, as discussed by Noyes in [1] and Trippi and Turban

in (2]. This report discusses research connected to the

development of a data structure and an algorithm to evaluate this

type of rule-base and the estimation of the processor speeds

necessary to evaluate these rules within the required time. The

particular application for this real-time ES is a rule-base to aid
the pilot of modern fighter or transport aircraft and the remainder

of this report will address this application. However, the results

of the research presented here could be used in other applications.

1

All assumptions in this report on sensor update rates, number

of sensors, and other matters that determine real-time response are

based on conversations with F-4 pilots and program managers working

aircraft systems applications. The numbers are application-

specific. The actual numbers for the application at hand and the

configuration of the available processing hardware determine system

ability to respond in real-time. The simulation and inferencing

methods developed in this report are designed to enable system

expandability to ensure real-time performance.

Throughout this report the notation 0O(x)P is found. This

means "on the order of x. The notation 90(101) means won the

order of 10' or "somewhere in the neighborhood of 10.'

2

2. EXPERT SYSTEM FOBMWAT O

This ES rule-base formulation depends upon a state vector, a

criteria vector, a response (action) vector, and a set of rules.

The aircraft state vector s consists of z continuous and

discrete components (state variables) completely describing the

state of the aircraft at a given time-step tk, of magnitude 0(10-")

seconds. These values are determined by a collection of oai-board

sensors and there may be 0(102) of these. For example, state

variable S12 might represent the number of pounds of fuel currently

in the fuel cells. The aircraft criteria vector c is a vector of

m Boolean (True or False) variables. Each of these variables is

based upon a value of one or more of the variables in the state

vector. For example, criterion c 33 might represent the relationship

between the current amount of fuel and a minimum fuel reserve

(e.g., c33 = [S12 :. fRI) and c 33 is True when there is insufficient

fuel reserve.

A set of n rules, of order 0(103), defines the on-board expert

system that will advise the pilot and, with the pilot's consent,

act on his or her behalf. Each ES rule can be formulated in terms

of a conjunction of simple Boolean criteria that lead to a single

action. If all of a given rule's criteria are true (based upon the

elements of the corresponding criteria vector), an action will

result. This action could either be an activity that is

3

automatically performed for the pilot or it could be a

recommendation to the pilot. All of these actions define an action

vector a of size p. Each rule is expected to involve only a

relatively small number of m possible criteria. For this report,

m is of order O(10'). For example, each rule may have up to 10

criteria. The rule-base is built off-line, and not modified during

the search process. For example, a typical rule might look like

this (0-8 means "NOT-):

Rule R123 : action1 2 <== c1 & ~cS & c 6 & c1 8 & -c 47 & -c99

This rule is interpreted as stating that action1 2 will be taken if

C1 , c 6, and c18 are all true while cs, c 47 , and c 99 are all false.

In a typical ES, the inference engine performs three standard

operations: the match operation matches the criteria against the

rules to see which could fire, the resolve operation chooses which

of these rules will fire, and the execute operation actually fires

these rules and updates working memory. For the given problem,

these operations can be simplified into a simple match-fire

operation with no resolution operation nor updates.

While it is assumed that no action alters the criteria vector

c in any way at any time-step tk, it is possible that different

rules can have the same action. Hence, by expressing each rule

only in terms of simple AND and NOT logic, its evaluation can be

done very efficiently and independently. (Note that OR constructs

4

are equivalent to multiple rules that specify the same action.)

Duplicate actions are prevented by the action triggering

mechanism that is external to the inference engine described in

this report. This mechanism sets a Otriggered" flag when the

action is started. In a given update cycle, this flag can only be

set once. All other attempts to set this flag are ignored. When

the action is completed, the flag is reset.

Conflicting actions can be resolved by expanded criteria such

as ~-a51•. This means that the rule's consequent action would not

take place if action #51 is underway. This technique would mean

that the blackboard would have to be updated for each action start

and completion. Thus, the action vector would have an associated

Oaction triggeredO vector. This could be accomplished by simply

making the element in the action vector negative for maction

underway" or positive for *action not underway."

5

3. DATA STRUCTURE AND ALGORITHM DMVELOPMENT

The data structure and algorithms developed to evaluate this

ES, are designed to be used by a single fast processor or by

parallel processors that can have a correspondingly slower clock-

speed. This data structure utilizes the notion of a blackboard

that contains the state and criteria vectors described above. In

addition, three other vectors, the action, query, and index vectors

completely define the rule-base. Unlike the a and c vectors, these

three vectors are not updated, and can reside either in the

blackboard or some other data storage area. The query vector

contains a list of the criteria for each rule. The index vector

elements point to the criteria that apply to each rule.

A blackboard is a global and dynamic data base for the

communication of independent asynchronous knowledge sources for

related aspects of a given problem. The aircraft system blackboard

will contain the state vector n and criteria vector c. These

vectors will be updated by an independent on-board computer (not

involved in the rule search) at each time-step. Each update of the

vector c will immediately initiate a new evaluation of the rules'

criteria, so the rule search mu3t be complete for the criteria

vector at time-step tk before the criteria vector is updated at

time-step tk÷l. Hence, this blackboard must also be accessible by

the computer that executes the rule processing algorithm. Criteria

vector updates are discussed by Racth in [3, 4].

6

While it is possible that a fast single processor computer

could be used on the aircraft, the most likely hardware

configuration for the rule processing algorithm will involve eight

(8) parallel processors. This number is convenient since systems

developers typically place eight processors on one board for

embedded applications. (Transputers are a likely candidate since

they are currently available to the sponsor.)

One of the eight processors will serve as the combined master

and I/O processor and will have one of its four serial I/O ports

connected to the conmnon data bus on the aircraft. This processor

will accept the criteria vector and possible pilot input and

provide the ultimate rule search output. The remaining 7

processors may use each of their four I/O ports to connect to any

other processor. A preset architecture will be employed. This

architecture can be as simple as a ring or as complex as a mesh.

Both algorithms presented in this report should be considered

as prototypes and have been implemented in Pascal. If a particular

algorithm is sufficiently successful, it will eventually be

implemented in Ada or Ada-9X. This will permit a ready transition

to operational aircraft since the Ada standard has been mandated

for DoD embedded applications. Mil-Std versions of transputers

exist. Together, transputers programmed in Ada represent a mature

and installable parallel processing capability that takes advantage

of modern processor architectures.

7

4. ETHOD-1

The simplest method for this ES evaluation assumes that the if-

then-actiun rules and their criteria are listed in priority order.

This is equivalent to a priority-oriented backward chaining method.

This is the obvious choice when n << m and no other assumptions are

made about available data. (Note that if these rules were not

prioritized, then this first algorithm could be viewed as a forward

chaining algorithm.) Because no OR-logic is present in a given

rule, the current rule-processor should stop with the first

ci = False (or first ci = True in the case of -ci). If these rules

were ranked and evaluated from highest to lowest priority, then the

first action produced (if any) would be the most important from the

"nilot's point of view. If required, different levels of

p-raLlelism could be employed during this evaluation process. If

the processing time is not fast enough, then rules having the same

priority could be grouped according to their number of criteria in

order to equalize the work among the parallel processors, as

discussed by Tout and Evans in [5]. A simple example of a rule-

base with four rules is:

Rule Rj: action, <== c, & c 3 & -c 4 & c 40 & -c 98 & c 99
Rule R2 : action, <== c 2 & c 4 & c 22 & ~c85
Rule R3 : action2 <== c5 & c 99
Rule R4 : action3 <== c1 & c50

Note that R, is the highest priority rule and R4 is the lowest

priority rule. The criteria are evaluated left to right.

Evaluation stops as soon as a False is detected. The left-to-right

evaluation can be thought of as assuming that the left-most

8

criteria are expected to occur most often and are thus evaluated

first.

These rules could be represented efficiently by using three

vectors: the previously discussed action vector a whose elements

each point to a specific task to be completed, a auerv vector q,

identifying which criteria have to be checked, and an index vector

Znd, that delimits the criteria that appear in each of the rules.

For the above rule-base, consider:

RULE 1: ACTION1 = A,; Q, = 1, Q2 = 3, Q3 = -4, Q4 = 40, Q5 = -98, Q6 = 99, So
START, = 1; END1 = 6

RULE 2: ACTION2 = A1 ; Q7 = 2, Q8 = 4, Q9 = 22, Q10 = -85, so
START 2 7; END2 = 10

RULE 3: ACTION 3 = A2 , Q1 1 = 5, Q12 = 99, so
START3 11; END3 = 12

RULE 4: ACTION4 = A3 ; Q13 = 1, Q14 = 50, so
START 4 13; END4 = 14

Here q employs positive integers to indicate the indices of

the criteria used in the rules and negative integers for the

indices of the criteria complements (NOT-criteria). Note also that

Rules 1 and 2 have the same consequent. From the previous example,

one has the 14-element query vector:

q: I 1I I -41 401-981 991 21 41 221-851 51 991 iI 501

This allows for direct and very fast access to the c vector

stored on the blackboard (only one internal integer multiplication

9

and addition are needed to compute any cell address). If parallel

processors are used, this Boolean criteria vector c can be accessed

from the blackboard by all processors. If multicomputers are used,

c would be commmunicated to the local memory of each processor and

this communication time will need to be considered, according to

Lester in [6]. Each processor also must use components from the

query vector q. Note the relationship Startjj = Endj + 1 with

Start, = 1, so only the End unsigned integer index vector is

actually needed by the algorithm. In this example, one has:

End: I 61 101 121 141 which implies Start: I 11 71 lli 131

Note that vector q has a number of elements equal to the sum

of the number of criteria queried by each rule. Vector End has n

elements, the total number of rules.

10

This method yields AlcorithM-1, presented below, which is a

relatively simple and straightforward algorithm that can utilize

these data structures.

Forall i := 1 to n do in parallel
begin

if i = 1
then j 1
else j := Endi. 1 + 1;

Fired := TRUE;
while j S Endi and Fired do

begin
k qj;
if k > 0 and not Ck then

Fired := FALSE
else if k < 0 and C-k then

Fired := FALSE;
j := j +1

end;
if Fired then perform action aj

end

In Algorithm-i, the Forall statement creates up to n parallel

processes. If p is the number of parallel processors and p Z n,

then this loop completes as soon as the slowest of these processes

has finished execution. Here the total parallel processing time at

a given time-step is the maximum of these times. If p < n, then

the next available processor would evaluate the next unprocessed

rule, hence the total parallel processing time at a given time-step

is then the maximum of all sums of the individual processor times.

Notice that this reduces to a normal sequential processing

algorithm when p = 1.

I1

For example, if p Z 4 and it takes an estimated average of 50

microseconds to check each criterion in the previous 4-rule

situation, then 4 copies of the loop body will be created on 4

different processors, each with its own value of the loop control

i-variable. These will execute in parallel with respective times

of 300, 200, 100, 100 microseconds, at most (as soon as a FALSE is

determined, the process stops for the current rule). This would

then take at most 300 microseconds in parallel versus at most 700

microseconds if done sequentially, giving a speedup of 7/3 or

approximately 2.3. Here the action performance time (e.g.,

displaying an information screen) was not considered, nor was

processor-assignment overhead or communication time. Of course,

any of these three times can have a significant effect on this ES

evaluation process.

12

S. MEOD-

The previous method does not take advantage of searching in any

informed way whenever a state variable (and hence a criterion)

changes, because the indexing is in the opposite direction from

rule to criterion. A second, combined forward-backward chaining

method, could be used to check o the rules whose criteria values

have changed since the last evaluation of the rule-base. To do

this, one could also index in the opposite direction, checking only

the rules having newly changed (currently "activem) criteria. The

forward phase identifies the changed criteria and rules that use

these criteria. The backward phase is the same as before with

presumably fewer rules to process. For example, using the same

four rules as before, one could have something like:

CRITERION Cl: NEEDTOCHECK, = FALSE; FIRST, = 1; LAST, = 2; R, = 1, R2 = 4
CRITERION C2 : NEEDTOCHECK2 = TRUE; FIRST2 3; LAST2 = 3; R3 = 2
CRITERION C3 : NEEDTOCHECK3 = FALSE; FIRST3 = 4; LAST 3 = 4; R4 = 1
CRITERION C4 : NEEDTOCHECK4 = TRUE; FIRST4 = 5; LAST4 = 6; R5 = 1, N6 = 2
CRITERION Cs: NEEDTOCHECK5 = FALSE; FIRST. = 7; LAST5 = 7; R7 = 4
CRITERION C6 : NEEDTOCHECK6 = TRUE; FIRST6 0; LAST 6 0;

NOT IN ANY RULE

CRITERION C99 : NEEDTOCHECK99 = FALSE; FIRST99 = 13; LAST99 = 14; R1 3 = 1, R14 = 3

Assuming criteria c 2, c4 , and c 6 were the only ones that changed

(their HmadToCheck components would be set to True in the
blackboard), the abovE would cause Rule 2, Rule,, and Rule 2 to be

consolidated into the set { Rule,, Rule 2 1 with the components

NeedToCheck 2, NeedToCheck 4, and NeedToCheck 6 being reset back to

13

False. The efficiency of this method is related to the number of

active (recently changed) criteria at any time-step. The number of

criteria that change at any time-step is highly dependent upon the

application. The fewer the criteria that change, the faster this

method will be, but this method is more complex and requires both

more data and storage than the previous method.

Each change in the state vector s at time-step tk can cause the

status of the Boolean criteria vector c (and its corresponding

Ne"ToCheck vector) to change. Each criteria vector change, in

turn, causes a set (or prioritized list) of rule numbers to be

defined. Each rule in the set would contain at least one of the

changed criteria and only the rules in this set need to be checked

to see if all criteria hold. Once these rules have been

identified, the actual criteria checking itself is done in the same

manner as in Algorithm-1. It is possible to go further and only

check the previously unsatisfied criteria in those rules. However,

the additional software complexity, memory utilization, and

execution time would likely exceed any savings compared to simply

using Algorithm-1.

Figure 1 summarizes the previous discussion of Method-1 and

Method-2. In order to map the rules to actions, each element in

the Rules -> Action vector contains a pointer to an element in the

Action vector. A record-oriented data structure can also be used

to implement this system.

14

71117

9L

U Ix

bE

a -

* 0

* a

00

CIS

0 a00 -

3,

Ls a SO

0
30.

* U 0

a a ' a;15

6. DEALING WITH UNCERTAINTY

In practice, one or more sensor failures may lead to

undetermined (uncertain) components of the state vector s, which

may lead to one or more unknown components of the criteria vector

c. For any given rule, one of three situations must hold at time-

step %k: (1) all its criteria are known, (2) there are unknown

criteria, but at least one of the known criteria fails to be

satisfied, (3) all of the known criteria are satisfied, but there

are still unknown criteria. The first two situations are easily

addressed, since it can be exactly determined if the rule will fire

or not (in the second case it will not fire). In the third

situation, the values of the unknown criteria determine whether the

rule will fire or not. Because of the possible interdependence of

criteria, it is very difficult to determine any type of formal

probability or level of certainty measure associated with the

firing of this rule since multivariable conditional probabilities

are involved. However, it is possible to report a possible action

by simply keeping count of the number of criteria that are unknown

for the given rule. This requires that each component of the

criteria vector c have one of three values (True, False, Unknown),

instead of just True or False as used in Algorithm-1. A possible

action occurs if a rule's criteria are either True or Unknown.

The algorithm to do this is a variation of Algorithm-i, but is

slightly more complex and takes more processing time. This is

16

because an additional IF-test is needed, and two additional

counting operations are necessary for the reporting when one or

more of the necessary c values are unknown. The reporting of the

Ucount/Ncrit ratio is intended to give the pilot some measure of

exactly how many unknown criteria (Ucount) exist relative to the

total number of criteria (Ncrit) that are used in the given rule.

For example, if there are 10 criteria in the rule and a possible

action is reported with a ratio of 1/10, then the pilot might place

more confidence in it than if a ratio of 7/10 was presented.

The algorithm designed to deal with this uncertainty is

presented below as Algorithm-lu:

Forall i := 1 to n do in parallel
begin

if i = 1
then j 1
else j := Endi_1 + 1;

Fired := TRUE;
Ncrit 0;
Ucount 0;
while j < Endi and Fired do

begin
k := qj;
if clk, is Unknown then

Ucount := Ucount + 1
else if k > 0 and ck is False then

Fired := FALSE
else if k < 0 and c.k is True then

Fired : FALSE;
j := j + 1;
Ncrit := Ncrit + 1

end;
if Fired then

if Ucount = 0
then perform action aj
else report possible aj with Ucount/Ncrit ratio

end

17

This algorithm could also be modified to report exactly which

unknown criteria caused the problem. When considered in the total

application context, it may also be useful to report the failed

sensors that caused the unknown criteria.

18

7. SIMULATION GUIDELINES AND RESULTS

The software and hardware realization associated with the rule

processing algorithm will depend upon the amount and frequency of

the available data and the real-time constraints for the solution.

To see if an algorithm is acceptable, it could be implemented

within a specially written Turbo Pascal simulation program such as

PASIM (Pilot's Associate Simulator). This simulator can be used to

test Algorithm-1 and estimate both the sequential and parallel

processing speeds. Because of the interest in handling

uncertainty, the Pilots Associate Reliability Simulator (PARSIM)

program was developed to test Algorithm-lu. PARSIM can be thought

of as an extension of PASIM that also allows the user to

incorporate an uncertainty percentage that will also simulate

sensor failures throughout the flight. In this section, sample

simulation results are given for both of these algorithms.

However, most of the emphasis is placed upon Algorithm-lu as

implemented by the PARSIM program. Both PASIM and PARSIM are

designed to use a single processor computer to simulate a parallel

processing system.

The current PARSIM program parameters include (1) a maximum of

10,000 rules that are assumed to be in priority order, (2) a

maximum of 10,000 different actions (during a given time-step,

actions can be listed for all the rules that are fired), (3) a

maximum of 32,760 different criteria can be used altogether (this

19

is the largest single block of data allowed in Turbo Pascal and

32,767 is the largest positive integer), (4) a maximum of 8

transputer processors can be used (one of these used strictly for

I/O). The use of dynamic (array) variables in the program was

ultimately necessary to allow the sizes achieved above. Note that

a given criteria can appear in more than one rule and that a

consequent action can be triggered by more than one rule.

In order to perform an effective simulation, one needs to know

the processor speed in (1) evaluating a single Boolean criterion

ci, and (2) performing any recommended action produced by a rule.

The Inmos transputers to be simulated are T800-20 32-bit models

with math coprocessors. These transputers have a clock-speed of 20

MHz and up to 4 megabytes of memory each. A transputer was not

available in this study. However, the more critical criterion

evaluation speed can be estimated or bounded by empirically timing

this evaluation on the processors below (all including math

coprocessors). Here are the approximate averages of the measured

processing speeds required to evaluate a single criterion based

upon Aloorithm-l:

Intel 80386/16MHz: 81 microseconds = 8.1xlO- seconds
Intel 80486/33MHz: 16 microseconds = 1.6x105- seconds
Intel 80486/50MHz: 12 microseconds = 1.2x105- seconds

The 386/16 processor is the slowest of these and presumably the

closest in processing speed to the T800-20 transputer. For

Algorithm-lu with the 386/16 processor, the approximate average

20

criterion evaluation speed was found to be 115 microseconds (i.e.,

it takes almost 42% longer to evaluate a single criterion).

PARSIM randomly generates up to a given number of criteria for

each of n rules. It also generates random Boolean values for m

criteria, and updates them at random for each time-step. Many

random numbers are required during a typical simulation. The

built-in Turbo Pascal pseudo-random number (PRN) generator called

RANDOM, did not produce a sufficient amount of PRNs, so the uniform

(0,1) real full-period PRN generator (implemented with 32-bit

integers) is employed. This technique is discussed by Park and

Miller in [7] and by Press, et al. in [81. This is done with the

seed update seedt., := 16807seed, mod 2147483647 and producing the

uniform PRN by using u := seedt/2147483647. As usual, at the

start of a typical simulation, the "randomized" initial seedt.,1 is

obtained from the system clock.

A nominal mission length for a fighter aircraft (such as an F-

16) might range from 1-2 hours up to as many as 5 hours of flying

time. If one assumes that sensor updates all occur at 0.1-second

intervals, this dictates the simulation time-step. For example, a

90 minute flight would take 54,000 time-steps (90x60x10), and if

there were 10,000 rules with up to 10 criteria per rule (an average

of 5 criteria per rule), it would take about 18 hours to run the

PASIM code on a 486/33 machine. On that same computer, the PARSIM

code takes longer, for the reasons already indicated, hence a much

21

shorter number of time-steps was used.

In the simulation, all rules in the rule-base are evaluated for

each time-step in the flight; this is to produce the 'worst-casew

situation so that any necessary processor speed-up can be

identified. Actions are triggered as soon as a rule fires. It is

assumed that another set of processors performs the actions.

Obviously the search could be significantly faster if the algorithm

could terminate after the first action is triggered.

Figure 2 indicates essentially what is shown on the screen when

PARSIM executes (the screen size has more columns than this page of

text so the wording has been slightly modified). The underlined

quantities represent the simulation input and output values. As

with any simulation, these values contain a measure of uncertainty.

Specifically, Figure 2 shows the input and output of a short

PARSIM simulation with 4,000 rules with up to 10 criteria per rule

generated. The number of unique actions chosen does not affect the

simulation and was arbitrarily chosen to be 4,000 also. The input

of 1.15e-4 indicates the estimated average time, in seconds, that

it will take the on-board rule-processor to process a single

criterion (typical of a 386/16). The action time is input as zero,

since it is assumed that the ES triggers another computer to

perform this action. No intermediate output is requested (it is

only feasible to do this when the number of rules is very small).

22

Here 12,000 is the number of time-steps. Depending upon the sensor

update time, this could correspond to different flight times. For

example, if 0.1 second is the update time, then 0.1 x 12000 seconds

corresponds to 20 minutes of flight time, but if 0.5 second is the

sensor update time, the flight is 1 hour and 40 minutes. The

number 16027 is the total number of unique criteria generated.

When the user enters 10, it indicates that 10% of these are

expected to fail before the end of the flight.

RULE SIMULATION PROGRAM
THIS SIMULATES THE REAL-TIME PROCESSING OF A SET OF EXPERT SYSTEM RULES.
LOGICAL CONTRADICTIONS WITHIN THE GENERATED RULES ARE NOT GUARANTEED, NOR ARE
THE ABSENCE OF DUPLICATE RULES. NEITHER SHOULD SIGNIFICANTLY EFFECT THE
SIMULATION. IT IS GUARANTEED THAT THERE WILL BE NO DUPLICATE CRITERIA IN A
RULE.
INPUT:
ENTER THE NUMBER OF RULES TO GENERATE (1, . .1,0000) : 4000
ENTER THE NUMBER OF DIFFERENT ACTIONS (1,..,10000): 4000
ENTER THE CRITERIA LIMIT FOR EACH RULE OUT OF 32760 POSSIBLE (1, .. ,28761) : 10
ENTER THE SIMULATED TIME NEEDED TO EVALUATE A SINGLE CRITERION: 1.15E-4
ENTER THE SIMULATED TIME NEEDED TO PERFORM A SINGLE ACTION: 0
ENTER THE TOTAL NUMBER OF PARALLEL PROCESSORS (2, .. , 8) : 8
ENTER THE AMOUNT OF INTERMEDIATE OUTPUT DESIRED (0 IS NOMINAL)
- NONE(0), FIRST ACTION(l) , RULES & ACTIONS(2), RULES, ACTIONS & CRITERIA(3) : 0
ENTER THE (NON-NEGATIVE) NUMBER OF SIMULATION TIME-STEPS: 12000
ENTER THE UNCERTAINTY PERCENT FOR THE 16027 CRITERIA GENERATED [0.0, 100.0] : 10
OUTPUT:
THE ACTUAL LAPSED SYSTEM CLOCK A-TIME WAS 1.499850E+0003 SECONDS, WITH 21966
CRITERIA PROCESSED AND 1723 UNIQUE RULE(S) OUT OF 4725280 FIRED.
ON AVERAGE THERE WERE 5 CRITERIA PER RULE WITH 3.125E-0005 SECONDS
NEEDED TO PROCESS EACH RULE AND 1.250E-0001 SECONDS FOR THE ENTIRE RULE-BASE.
THE SIMULATED SEQUENTIAL S-TIME (ONE CPU) WAS 1.034389797E+0004 TIME UNITS.
THE SIMULATED PARALLEL P-TIME (8 PROCESSORS) WAS 1.529650535E+0003 TIME UNITS.
MAX{A-TIMrE= 1.7000E-0001, MAX{S-TIME}= 9,0988E-0001, MAX{P-TIME)= 1.3720E-0001

Figure 2: Rule Simulation Program Sample Screen Output

In the output, the a-time is the total for the computer

executing PARSIM to process all the criteria in all the rules for

23

the entire flight. (711-c? example in Figure 2 was run on a 486/33

and took 1,499.85 seconds to do this.) Its main purpose is to help

determine the overall average single criterion evaluation time for

the particular computer being used. If the user enters a 1 for the

single criterion evaluation time, then the s-time (simulated

sequential time) is simply a count of the number of criteria

processed. By dividing this count into the a-time, one obtains the

average time to process a single criterion for the processor on the

computer currently being used. By making several runs of this type

(e.g., 15 runs), one can obtain a reasonable estimate of this

overall average.

The key output values are the last two given in Figure 2. They

represent the maximum simulated sequential and parallel times over

the entire flight that it will take to evaluate the rule-base.

From these two values, it can be determined if the entire rule-base

can be processed in less time than the sensor update time. For

example, if the sensor updates are done every 0.1 second, then the

rule processing time at any time-step must not be slower that this.

Here a single processor takes slightly over 0.9 second to process

the entire rule-base with the sequential form of Algorithm-i while

the 8-processor parallel version of the same algorithm takes

slightly over 0.1 second. For this single simulation, neither the

sequential nor the 8 parallel processors (only 7 actually

processing the rules) will process the rule-base in an acceptable

amount of time. However, if the sensor update time is 0.5 second,

24

then the parallel processing is fast enough since 0.1372 < 0.5, but

the sequential processing is still not fast enough. If this

algorithm is implemented on multicomputers that have no common

memory, then updated data, such as the NeedToCheck vector, will

have to be communicated to each local rule-processor for each

sensor update cycle. This takes an additional amount of time. For

example, if this time were 0.2 second, the parallel processing is

still fast enough since 0.3372 is still less than 0.5.

Of course, conclusions such as the above should not be based

upon just one simulation run. One should run several simulations,

at least 10, with the same number of rules for long time periods

(e.g., equivalent to 5 hours of flight time) to draw conclusions

with a sufficient amount of confidence. Since it will take

approximately 1 hour and 24 minutes to perform this simulation on

a 486/33 microcomputer, a lot more running time is needed.

If uncertainty is not a concern, then Algorithm-1 can be used

as implemented by PASIM. Using the same inputs as above, except

that 8.1e-5 is used in place of 1.15e-4 (no uncertainty percent is

needed), one finds that the maximum sequential time is almost 0.6

second while the maximum parallel time is under 0.09 second.

Hence, based upon just one run, one would conclude that parallel

processing of 4,000 rules is fast enough even when 0.1-second

sensor updates are used. This does not take any additional

communication time into account.

25

There are some PARSIM (and PASIM) system limitations that

should be mentioned: (1) Due to the problem requirements as well

as the clock precision on the simulation computer (1/100th of a

second), one should not expect reliable timing estimates with fewer

than 1,000 rules. (2) The upper limit is 10,000 rules, but if one

simulates a rule-base of around 10,000 rules and chooses a maximum

of, for example 10 criteria per rule, then on average 50,000

criteria would have to be kept in the q array. But, this array is

limited to 32,760 locations, so the code will automatically reduce

the number of criteria per rule near the end of the generated rule-

base to ensure that each rule has at 'east one criterion. Hence,

the actual average number of criteria per rule may be closer to 3

than to 5 because of all the rules that must have only one

criterion. It is up to the PARSIM user to determine if this

average is realistic. (3) PARSIM run times do not take into

account any processor assignment or data communication times.

These depend upon both the architecture and hardware being used.

Most of the simulations that were run during this investigation

used rule-bases of sizes from 1,000 up to 6,000. The number of

distinct actions was arbitrarily input to be the same as the number

of rules since this has no effect on the simulation timing at all.

(However, if one wishes exact simulation reproducibility, this can

be input as & negative number, and the absolute value of this

number is used as the initial PRN seed instead of using the system

clock.) Two different rule limits were investigated, up to 10

26

criteria per rule and up to 20 criteria per rule. For example, if

a rule is needed to identify a radar according to six pairs of

parameter ranges, then up to 12 criteria may be needed in this rule

(e.g., 710 < f, :* 855 yields c, = f, Z 710 and c 2 = f, :S 855).

Two different time-steps were also studied: 0.1 and 0.5 second.

These were the thresholds used to determine when the simulated

maximum sequential or parallel times were good enough, meaning

smaller than 0.1 or 0.5 second, respectively. The criterion

evaluation times depended upon the algorithm being used. As stated

earlier, on average, it was found that Algorithm-1 used 81

microseconds and Algorithm-lu used 115 microseconds to evaluate a

single criterion for the 16-MHz Intel 386 processor. That is the

available processor closest in clock speed to the 20-MHz

transputer.

27

8. TEST RESULTS AND CONCLUSIONS

Due to the short project time available and the large amounts

of running time required, only one or two simulations were made for

each rule number and criteria limit combination. All of the

conclusions below are based upon these limited cases and should be

viewed accordingly. In particular, for maximum rule-base

evaluation times close to any desired threshold (e.g., 0.1 or 0.5),

more simulations will be necessary.

Based upon the simulations using Algorithm-1 with the PASIM

program (no uncertainty addressed), eight parallel processors with

a clock speed of 16 MHz or faster were always able to process a

rule-base of 4,500 or fewer rules having a maximum of 10 criteria

per rule. Single processors at this same speed were unable to do

this in under a tenth of a second. The average maximum speed-up

was 6.6, using 1 master and 7 rule-processors. A faster single

processor, such as the 50-MHz Intel 486, would be able to process

the same 4,500 rules within this same time.

Once uncertainty is introduced into the criteria vector, the

processing time increases. This was investigated by using

Algorithm-lu in the PARSIM code. Here the estimated average time

to process a single criterion goes from 81 microseconds to 115

microseconds. In order to process all of the rules within a tenth

of a second, with up to 10 criteria per rule, the simulation showed

28

that the number of rules in the rule-base had to be reduced to

2,500. It appears that up to 2,000 rules, each having up to 20

criteria can be executed in parallel under a tenth of a second

(with no extra comnunication time taken into account). Without

parallel processing, not even 1,000 rules could be evaluated. If

the sensor update time is increased to a half-second, then up to

6,000 rules with up to 20 criteria each can be processed in

parallel (even with a 0.2-second communication time added).

29

9. REFERENCES

1. James L. Noyes, Artificial Intelligence with Common Lisp:
Fundamentals of Symbolic and Numeric Processing, D. C. Heath,
Lexington, MA, 1991.

2. Robert R. Trippi and Efraim Turban, "Parallel Processing and
OR/MS," Computers & Operations Rejearch, Vol. 18, No. 2, 1991, pp.
199-210.

3. Peter G. Raeth, "An Expert Systems Approach to Decision Support
in a Time-Dependent, Data Sampling Environment, in Expert Systems:
A Software Methodologv for Modern Applications, Edited by Peter G.
Raeth, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp.
170-177.

4. Peter G. Raeth, "Expert Systems in Process Observation and
Control,w AI Expert, Vol. 5, No. 12, Sep. 1990, pp. 40-45.

5. K. R. Tout and D. J. Evans, "Parallel Forward Chaining Technique
with Dynamic Scheduling, for Rule-Based Expert Systems," Parallel
Computing, Vol. 18, No. 8, Aug. 1992, pp. 913-930.

6. Bruce P. Lester, The Art of Parallel Programming, Prentice Hall,
Englewood Cliffs, NJ, 1993.

7. Stephen K. Park and Keith W. Miller, "Random Number Generators:
Good Ones are Hard to Find," Communications of the ACM, Vol. 31,
No. 10, Oct. 1988, pp. 1192-1201.

8. William H. Press, et al., Numerical Recipes in Pascal: The Art
of Scientific Computing, Cambridge University Press, New York, NY,
1989.

30

